
International Journal of Heat and Mass Transfer 196 (2022) 123304 

Contents lists available at ScienceDirect 

International Journal of Heat and Mass Transfer 

journal homepage: www.elsevier.com/locate/hmt 

A new analytical model for the conduction shape factor of annulus 

sectors 

Callum Chhokar, G. Bamorovat Abadi, Majid Bahrami ∗

Laboratory for Alternative Energy Conversion (LAEC), School of Mechatronic Systems Engineering, Simon Fraser University, Burnaby, BC V3T 0A3, Canada 

a r t i c l e i n f o 

Article history: 

Received 21 April 2022 

Revised 9 July 2022 

Accepted 25 July 2022 

Keywords: 

Microelectronics cooling 

Thermal management 

Conduction 

Thermal resistance 

Hollow cylinder 

a b s t r a c t 

Heat transfer devices, such as heat pipes, vapor chambers, thermosiphons, microchannel heat sinks, and 

Peltier cooling plates, rely on two-dimensional steady heat conduction to thermally manage telecom- 

munications, aerospace, and microelectronics heat-generating components. The conduction shape factor 

can evaluate these devices’ two-dimensional steady heat conduction. The geometry of the device’s an- 

nulus and its mechanical attachment to the heat-generating component can vary. Given the prominence 

of single-sided heating and cooling, the two-dimensional heat conduction is commonly through an an- 

nulus sector. For the first time, an analytical model is developed to predict the conduction shape factor 

of annulus sectors. The present model is an extension of the previously developed equivalent concentric 

circular annulus model and applies the equivalent concentric circular annulus sector. The model is vali- 

dated with results from finite element modeling for parametric boundary geometries, capturing most of 

the data across a variety of sectors within a relative difference of 10%. The present model provides a sim- 

ple, closed-form analytical solution for the shape factor of an annulus sector formed between concentric 

arbitrarily shaped isothermal boundaries. More importantly, it provides a unified platform for designing 

and optimizing novel heat transfer devices. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Heat transfer devices, such as heat pipes, vapor chambers, ther- 

osiphons, microchannel heat sinks, and Peltier cooling plates 

ely on two-dimensional steady heat conduction in an annulus 

r annulus sector to thermally manage products with applications 

n telecommunications, aerospace, and microelectronics industries. 

ig. 1 illustrates a few examples of such devices. Heat pipes, pul- 

ating heat pipes, and microchannel heat sinks require low con- 

uction thermal resistance to effectively transfer heat to and from 

 working fluid. These devices are of varying geometry, owing to 

heir shape-based research and development. Given their applica- 

ion, they can be subjected to heating and cooling of a varying pro- 

ortion of their outer wall(s). 

For a two-dimensional region with an enclosed material that 

as constant thermal conductivity, the thermal resistance between 

he outer and inner boundaries is inversely proportional to the 

onduction shape factor per unit depth [1] : 

 = 

1 

kR 

= 

˙ Q 

k �T 
= 

˙ Q 

k | T o − T i | (1) 
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here S, k , R , ˙ Q , T o and T i are the shape factor per unit depth, ther-

al conductivity, thermal resistance, heat power, and outer and in- 

er boundary temperature, respectively (see Fig. 2 ). 

The shape factor per unit depth of a concentric circular annulus 

as an exact analytical solution as follows [2] : 

 = 

2 π

ln ( d o /d i ) 
(2) 

here, as shown in Fig. 2 , d o and d i are the outer and inner diam-

ter, respectively. 

Using Eq. (2) , Teertstra et al. [8] developed a shape factor model 

or arbitrary concentric shapes known as the two-rule method. The 

wo-rule method uses an equivalent concentric circular annulus. 

he inner and outer diameters of the equivalent concentric circular 

nnulus are calculated by preserving the inner perimeter and the 

nclosed area. The shape factor per unit depth can then be approx- 

mated as follows: 

 i = πd i → d i = P i /π

A = 

π

4 

(
d 2 o − d 2 i 

)
→ d o = 

√ 

4 

π
A + d 2 

i 

S = 

2 π

ln 

[ √ 

4 π
(
A/P 2 

i 

)
+ 1 

] (3) 
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Nomenclature 

a hyperellipse characteristic dimension [m] 

m polygon number of sides 

� nondimensional characteristic length scale, ≡
√ 

A /s i 
A area [m 

2 ] 

� ∗ modified nondimensional characteristic length scale 

d diameter [m] 

r radial coordinate [m] 

P perimeter [m] 
˙ Q heat power [W] 

T temperature [K] 

R thermal resistance [KW 

−1 ] 

k thermal conductivity [Wm 

−1 K 

−1 ] 

L length (or depth) [m] 

S shape factor per unit depth 

n hyperellipse exponent parameter 

s sector boundary length [m] 

Greek symbols 

ε aspect ratio 

δ wall thickness [m] 

α equivalent circular annulus sector angle [rad] 

ζ blending parameter 

θ angular coordinate [rad] 

ρ circumradius [m] 

� apothem [m], ≡ ρ cos ( π/m ) 
φ sector angle [rad] 

η unit normal vector 

Subscripts 

i inner 

o outer 

min minimum 

max maximum 

HT heat transfer 

here A and P i are the enclosed area and inner perimeter, respec- 

ively. The two-rule method shape factor can be written in terms 

f a nondimensional characteristic length scale, � , as follows: 

 = 

√ 

A /P i 

 = 

2 π

ln 

[ √ 

4 π� 2 + 1 

] (4) 

Teertstra et al. [9] further developed the method for nonuniform 

all thickness and thermal ǣshort-circuiting ǥ using an asymptotic 

pproach: 

 

∗ = 

[ 

� ζ −
(

lim 

δmin → 0 
� 

)ζ
] 1 /ζ

S = 

2 π

ln 

[ √ 

4 π( � ∗) 2 + 1 

] (5) 

here δmin is the minimum wall thickness, ζ is a blending param- 

ter whose value was selected to provide a good overall agreement 

ith the available data, and � ∗ is the modified nondimensional 

haracteristic length scale. Teertstra et al. reported that ζ = 3 was 

ppropriate. 

Other annulus shape factor models exist. Simeza and 

ovanovich [1] used the parallel flux-tube heat flow model 

10] for the polygonal cylinder with a concentric circular hole to 
2

evelop the following model for the shape factor per unit depth: 

 

2 = ln 

(
2�

d i 

)

S = 2 m 

{ 

1 

ψ 

√ 

ψ 

2 + 0 . 5 

tan 

−1 

[ √ 

ψ 

2 + 0 . 5 

ψ 

tan 

(
π

m 

)] } 

(6) 

here � is the apothem, the distance from the center to the mid- 

oint of one of the sides, and m is the number of polygon sides. 

Hassani and Hollands [11] used a similar approach and devel- 

ped a model for the shape factor per unit depth upper bound 

or identical boundary shapes (i.e., uniform wall thickness), such 

s concentric squares, triangles, rhombic cylinders, and rectangles: 

 max = 

2 π

ln [ 1 + ( 2 πδ/P i ) ] 
(7) 

here δ and P i are the wall thickness and inner perimeter, respec- 

ively. 

Numerical methods have also been developed. Given the def- 

nition of thermal resistance and shape factor, shown in Eq. (1) , 

irbodi and Jafarpur [12] used the heat transfer area to length ra- 

io to approximate the shape factor of any arrangement of m -sided 

olygons. Integral and weighted averaging methods were used to 

stimate the heat transfer length, L HT , and area, A HT . 

L = 

1 

kR 

= 

1 

k ( L HT /kA HT ) 
= 

A HT 

L HT 

(8) 

Although there are several conduction shape factor models for 

he annulus formed between concentric inner and outer isother- 

al boundaries, there is no analytical model in the literature for 

he annulus sector. This study fills this gap by developing a new 

nd accurate closed-form analytical solution to predict the shape 

actor for the annulus sector formed between concentric arbitrarily 

haped boundaries. 

This study uses the following approach: 

1. The analytical model is developed (Model development). 

2. The analytical model is extensively validated with finite el- 

ement modeling results for all-encompassing, parametrically- 

defined geometries (Results and discussion). 

3. Conclusions, including limitations, are drawn from the present 

model’s agreement with the finite element modeling results 

(Results and discussion, Summary and conclusions). 

. Model development 

The present model extends Teertstra et al.’ s two-rule method 

8] , shown in Eq. (3) , to consider an arbitrarily-shaped concen- 

ric annulus sector subject to partial inner and outer isothermal 

oundary conditions. Fig. 3 shows the equivalent concentric circu- 

ar annulus sector for a concentric hexagonal annulus sector. The 

uter isothermal boundary condition spans a larger length than the 

nner isothermal boundary condition (i.e., s o > s i ). The remaining 

uter perimeter is insulated. The inner perimeter may be partially 

r entirely isothermal (i.e., s i ≤ P i ); however, the model neglects 

emperature gradients that are normal to the sector’s angular ex- 

ents (i.e., the model considers a null temperature gradient in the 

-direction at the sector’s θ extents). Neglecting these gradients 

nderestimates the shape factor. In doing so, the model overesti- 

ates thermal resistance. Consistent with the nature of the two- 

ule method, isotherms are assumed to be equivalently radial, or 

arallel to the inner and outer boundaries ( s i and s o ). Thus, thick,

mall-angle sectors, which may be better modeled with a thermal 

preading resistance, are not considered. Extending the two-rule 
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Fig. 1. A schematic representation of the cross-sections of a) round and flat heat pipes (e.g., [ 3,4 ]), b) tubular and flat-plate pulsating heat pipes (e.g., [ 5,6 ]), and c) microchan- 

nel heat sinks (e.g., [ 7 ]). The repeating unit can be considered an annulus for the latter two devices. These devices have been manufactured with varying cross-sectional 

geometry, an active area of their research and development, and used in various heating and cooling configurations. 
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ethod, the shape factor of the sector is as follows: 

 = 

α

ln 

[ √ 

2 α
(
A/s 2 

i 

)
+ 1 

] (9) 

here A and s i are the sector’s area and inner boundary length, 

espectively, and α is the angle of the equivalent circular annulus 

ector, which is an estimated quantity, and not the angle of the 

ector, φ. Similar to the analysis for the entire annulus in Eq. (4) ,

he shape factor can be written in terms of a nondimensional char- 

cteristic length scale as follows: 

 = 

√ 

A /s i 

 = 

α

ln 

[√ 

2 α� 2 + 1 

] (10) 

here � and α are the nondimensional characteristic length scale 

nd equivalent sector’s angle, respectively. A third rule is proposed 
3 
n this study to approximate the equivalent sector’s angle. This rule 

reserves the outer boundary length of the sector. This rule is com- 

ined with the two-rule method, Eq. (3) : 

 o = 

α

2 

d o 

α = 

1 

2 

(
s 2 o 

A 

− s 2 
i 

A 

)
= 

1 

2 � 2 

[(
s o 

s i 

)2 

− 1 

]
≤ 2 π (11) 

here A , s o , and s i are the sector’s area, and outer and inner

oundary length, respectively. The equivalent sector’s angle is lim- 

ted to that of an entire annulus (i.e., α ≤ 2 π ). 

Eqs. (10) and (11) are used to calculate the shape factor of the 

ector. For an annulus with uniform wall thickness, the shape fac- 

or can be simplified: 

 = 

α

ln ( s o /s i ) 
= 

( s o /s i ) 
2 − 1 

2 � 2 ln ( s o /s i ) 
, α ≤ 2 π (12) 
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Fig. 2. Concentric circular annulus. 
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here � is the nondimensional characteristic length scale, defined 

n Eq. (10) , and s o /s i is the sector’s outer to inner boundary length

atio. For equivalent sector angles above 2 π , the sector is likened 

o an entire annulus and the two-rule method is used, Eq. (4) . 
ig. 3. Two-rule, equivalent concentric circular annulus model extended to consider a se

f an arbitrary portion, or sector, of its outer perimeter. The sector’s outer boundary len

he remaining outer perimeter is insulated (hatched lines); an arbitrary annulus sector o

egion.“A” to “B”, the inner perimeter of the entire annulus, P i , is also subject to an iso

ullifies temperature gradients normal to the sector’s angular extents (dashed lines). The 

 i , s i ≤ P i , which is subject to an isothermal boundary condition of T i , to calculate the shap

4

As mentioned and shown in Eq. (5) , Teertstra et al. [9] further 

eveloped the two-rule method for dissimilar boundaries, where 

he annulus may have a highly nonuniform wall thickness. As 

hown in Fig. 4 , the same asymptotic blending approach is used 

or the present model, where the sector’s nondimensional charac- 

eristic length scale is modified, � → � ∗, before using Eq. (10) to

alculate the sector shape factor: 

 

∗ = 

[ 

� ζ −
(

lim 

δmin → 0 
� 

)ζ
] 1 /ζ

α = 

1 

2 � 2 

[(
s o 

s i 

)2 

− 1 

]
≤ 2 π

S = 

α

ln 

[ √ 

2 α( � ∗) 2 + 1 

] (13) 

here δmin is the minimum wall thickness, ζ is a chosen blend- 

ng parameter chosen as three following Teertstra et al. [9] , and � ∗

s the sector’s modified nondimensional characteristic length scale. 

s previously mentioned, a blending parameter of three provided 

 good overall agreement with available entire annulus conduction 

hape factor data as reported by Teertstra et al. [9] . The blending 

arameter is a fitted parameter that can significantly change the 

ector shape factor calculated by the present model ( Eq. (13) ) and 

he entire annulus shape factor model of Teertstra et al. [9] . As will

e shown in the results and discussion of this study, a value of 

hree provided not only good agreement with experimental data 

or Teertstra et al. [9] but also good agreement with finite element 

odeling results for the wide variety of investigated annulus sec- 
ctor. “A” shows an arbitrary annulus subject to an isothermal boundary condition 

gth, which is subject to an isothermal boundary condition of T o , is denoted by s o . 

f area A is now defined, distinguished from the entire annulus by the dark shaded 

thermal boundary condition of an arbitrary portion; however, the present model 

model uses a portion of the inner perimeter, or the sector’s inner boundary length, 

e factor. “B” to “C”, the equivalent annulus sector is applied. 
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Fig. 4. Nonuniform wall thickness and thermal short-circuiting. 
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Fig. 5. Boundary conditions used in the finite element modeling. η is the unit nor- 

mal vector. The temperature difference, T o − T i , and thermal conductivity, k , were 

chosen as 1K and 1Wm 

−1 K −1 , respectively. 
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ors presented in this study. It is important to note that the equiv- 

lent sector angle is not affected by the blending, the nondimen- 

ional characteristic length scale, � , appears in its expression as 

nly an algebraic simplification. For equivalent sector angles above 

 π , the sector is likened to an entire annulus and the modified 

wo-rule method is used, Eq. (5) . 

For annulus sectors with uniform wall thickness, the present 

odel, in Eq. (12) , provides the shape factor of concentric annu- 

us sectors as a function of two nondimensional parameters, the 

ector’s nondimensional characteristic length scale, � , and bound- 

ry length ratio, s o /s i . For nonuniform wall thickness, Eq. (13) uses 

 blending approach but still provides the shape factor as a 

unction of only two nondimensional parameters, the sector’s 

ow-modified nondimensional characteristic length scale, � ∗, and 

oundary length ratio, s o /s i . Eqs. (12) and (13) provide simple, uni- 

ed, and closed-form analytical solutions for the shape factor of 

rbitrarily-shaped concentric annulus sectors. 

. Results and discussion 

To extensively validate the present model, sectors of 

arametrically-defined annuli with uniform and nonuniform 

all thickness are numerically modeled using finite element mod- 

ling. Although the validated annuli represent simple geometries, 

heir sectors do not. This validation considers well over a thousand 

istinct annulus sectors using well-defined parametric analysis. 

he consideration, and subsequent validation, of such a significant 

umber of sectors affirms the present model’s applicability to 

rbitrary geometry. 

For this validation, the sector’s inner isothermal boundary, is 

onsidered to span the entire inner perimeter (i.e., s i = P i ). This 

ests the present model’s assumption of insulated angular ex- 

ent lines (“A” to “B” in Fig. 3 ). This setup is representative of 

onduction-limited applications, where the conduction thermal re- 

istance far outweighs the convective (this is typical of most of the 

evices of interest to this modeling, such as those illustrated in 

ig. 1 ). 

Given that there is no available experimental data in the 

pen literature to validate the present model, the parametrically- 

efined annulus sectors are modeled using finite element modeling 

FEM) with the COMSOL Multiphysics software package v5.6 [13] . 

wo-dimensional, steady-state heat conduction is calculated using 

aplace’s equation: 

 

2 T = 0 (14) 
5 
ith a relative tolerance of 0.001 used to determine numerical 

onvergence [13] . Mixed boundary conditions were used in this 

tudy (Dirichlet and Neumann). As shown for an exemplar annulus 

ector in Fig. 5 , Dirichlet conditions are imposed for the isother- 

al boundaries (i.e., T i and T o that span s i and s o , respectively). 

eumann conditions are imposed for the out-of-sector, remain- 

ng outer boundary. This Neumann condition is insulative and ex- 

ressed as: 

· ∇T = 0 (15) 

here η is the unit normal vector to the boundary. 

Using Fourier’s law, numerical data is integrated along the sec- 

or’s outer isothermal boundary, s o , to calculate the shape factor: 

 = 

1 

kR 

= 

∫ s o 
0 η · ∇T ds 

( T i − T o ) 
(16) 

here η is the unit normal vector to the outer isothermal bound- 

ry, s o . To simplify the calculation, the thermal conductivity, k , and 

emperature difference, T o − T i , were set to 1Wm 

−1 K 

−1 and 1K, re- 

pectively, in the finite element modeling. 

Mesh dependency studies were performed for all of the inves- 

igated annulus sectors. Given the specified boundary conditions, 

t was necessary to mesh entire annuli. As previously discussed, 

nnulus sectors were defined by the applied boundary conditions 
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Fig. 6. Mesh dependence study. An annulus sector with highly nonuniform wall thickness was chosen for the illustrated exemplar given its entire annulus’ larger relative 

differences from experimental data in the literature [9] . A minimum mesh density of about 25 0 0 0 elements per unit area was found to be sufficient for most of the 

investigated annulus sectors. Typically, the shape factor changed by less than 0.1% at this mesh density. FEM: finite element modeling. 
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 Fig. 3 ). A free triangular mesh was used for all of the investigated

nnuli. 

As shown in Fig. 6 , an exemplar mesh dependency study is 

hown for an annulus sector of highly nonuniform wall thickness. 

n annulus sector with highly nonuniform wall thickness was cho- 

en for the illustrated exemplar given its entire annulus’ larger rel- 

tive differences from experimental data in the literature [9] . A 

inimum mesh density of about 25 0 0 0 elements per unit area 

as found to be sufficient for most of the investigated annulus sec- 

ors. Typically, the shape factor changed by less than 0.1% at this 

esh density. 

.1. Uniform wall thickness 

The model is validated for offset parametrically-identical 

oundaries, with the offset defined by a uniform wall thickness. 

he hyperellipse and regular polygon were chosen to define the 

oundaries parametrically, providing an exhaustive geometric anal- 

sis. 

.1.1. Hyperellipse 

The hyperellipse, or Lam ̧E curve, is written in radial coordinates 

s follows [14,15] : 

 ( θ ) = a 
(| cos θ | n + ε−n | sin θ | n )−1 /n 

(17) 

here ε is the aspect ratio (ratio of the side lengths, non-unity 

spect ratio geometries clarify this definition, shown in Fig. 9 ), n is 

he exponent parameter and a is the characteristic dimension. As 

hown in Fig. 7 , changing the exponent parameter yields a variety 

f boundaries. For geometries with offset hyperellipse boundaries, 

he annulus is described as follows: 

 o ( θ ) = a 
(| cos θ | n + ε−n | sin θ | n )−1 /n 

r i ( θ ) = a 
{

[ 1 − ( δ0 /a ) ] 
−n | cos θ | n + [ ε − ( δ0 /a ) ] 

−n | sin θ | n }−1 /n 
, n ≥ 1 

(18) 

here r o , r i , and δ0 are the outer and inner radial coordinates and

he offset (wall thickness), respectively. As shown in Fig. 7 , the wall 

hickness for a hyperelliptical annulus is defined as the thickness 

long the characteristic axes. 

The parameters required to calculate the shape factor using the 

resent model, Eq. (12) , do not have closed-form solutions but can 
6 
imply be calculated as follows: 

 = 

√ 

A /s i = 

√ ∫ φ/ 2 

0 

(
r 2 o − r 2 

i 

)
dθ

2 

∫ φ/ 2 

0 

[√ 

( d r i /d θ ) 
2 + r 2 

i 

]
dθ

s o /s i = 

∫ φ/ 2 

0 

[ √ 

( d r o /d θ ) 
2 + r 2 o 

] 
dθ

∫ φ/ 2 

0 

[√ 

( d r i /d θ ) 
2 + r 2 

i 

]
dθ

(19) 

here φ, � , and s o /s i are the sector angle, nondimensional charac- 

eristic length scale, and boundary length ratio, respectively. Using 

qs. (18) and (19) in the present model, the nondimensional inputs 

or the shape factor, � and s o /s i , can be expressed as a function

f the sector angle, φ, the exponent parameter, n , and two ratios, 

hickness ratio, δ0 /a , and aspect ratio, ε. 

The present model is plotted against the nondimensional char- 

cteristic length scale, � , and compared to the results from finite 

lement modeling (FEM) in Figs. 8 and 9 . The results from finite el- 

ment modeling were obtained by sweeping through sector angles 

or chosen thickness and aspect ratios. The minimum investigated 

ector angles are listed in Table A.1 in Appendix A . The relation- 

hip between the sector’s geometric parameters and nondimen- 

ional characteristic length scale is shown in Eqs. (18) and (19) . For 

 hyperelliptical annulus with a given aspect ratio and exponent 

arameter, the nondimensional characteristic length scale increases 

ith increasing thickness ratio and decreases with increasing sec- 

or angle (i.e., thicker, smaller angle sectors have higher nondimen- 

ional characteristic length scales). For example, the exact relation- 

hip for a circular annulus sector, n = 2 and ε = 1 , can be written

s follows: 

 n =2 ,ε=1 = 

(√ 

A /s i 
)

n =2 ,ε=1 
= 

1 √ 

2 φ

√ 

2 ( δ0 /a ) − ( δ0 /a ) 
2 

1 − ( δ0 /a ) 
(20) 

here φ and δ0 /a are the sector angle and thickness ratio, respec- 

ively. 

Hyperelliptical sectors with an aspect ratio of one have a 

oundary length ratio that is only a function of the thick- 

ess ratio, ( s o /s i ) ε=1 = 1 / [ 1 − ( δ0 /a ) ] , and thus, a single curve 

or each thickness ratio is shown in Fig. 8 . For non-unity as- 

ect ratios, the boundary length ratio is also a function of 

he sector angle, the aspect ratio, and the exponent param- 
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Fig. 7. Hyperelliptical annulus sectors. A ratio of the side lengths, or aspect ratio, of unity is shown, ε = 1 . 

Fig. 8. Model validation for hyperelliptical sectors, ε = 1 . 

7
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Fig. 9. Model validation for hyperelliptical sectors, ε = 1 / 2 . 

Fig. 10. Regular polygonal annulus sectors. 

8 
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Fig. 11. Model validation for regular polygonal annulus sectors. 

9 
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Fig. 12. Annulus sectors with nonuniform wall thickness. 
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ter. However, for the chosen hyperelliptical annulus sectors, 

hese differences are slight and not graphically apparent, and 

hus, a single curve for each thickness ratio is also shown in 

ig. 9 . 

The present model showed good agreement with results from 

nite element modeling and accurately captured trends for vary- 

ng exponent parameters, aspect ratios, sector angles, and wall 

hicknesses. As shown in Table A.1 in Appendix A , the root-mean- 

quare (rms) and maximum differences between the results from 

he present model and finite element modeling was less than 10 

nd 20%, respectively, for all investigated sectors. As shown in 

igs. 8 and 9 , sectors with larger thickness ratios and smaller sec- 

or angles typically had more considerable relative differences ow- 

ng to the nature of the underlying two-rule method and the stated 

ssumptions. Thick, small-angle sectors intuitively pushed the lim- 

ts of the present model, exhibiting isotherms that were more con- 

istent with thermal spreading resistance modeling than equiva- 

ently radial, or parallel to the inner and outer boundaries ( s i and 

 o ). For most of the investigated hyperelliptical sectors, this limit 

as at a nondimensional length scale of about 0.55. To re-iterate, 

hese results indicated that the key limitation of the present model 

s that it may be unreliable for thick, small-angle sectors with 

ondimensional length scales above 0.55. For the exemplar annu- 

us in Eq. (20) and an exemplar sector angle of π/ 2 , or a quarter

nnulus, this nondimensional length scale corresponds to a thick- 

ess ratio of about 0.3, consistent with the maximum investigated 

alue in the validation. 

s

10 
Typically, the shape factor exponentially increases for a decreas- 

ng nondimensional characteristic length scale. As previously ex- 

mplified in Eq. (20) , an increase in the sector angle or decrease 

n the wall thickness decreases the nondimensional characteristic 

ength scale. In other words, as one would intuitively expect, the 

hape factor of an annulus sector is maximized by minimizing the 

all thickness and maximizing the sector angle. 

.1.2. Regular polygon 

The m -sided inscribed regular polygon is mathematically writ- 

en in radial coordinates as follows: 

 ( θ ) = 

ρ cos ( π/m ) 

cos { ( 2 /m ) arcsin [ cos ( mθ/ 2 ) ] } , m = 3 , 4 , 5 , . . . (21) 

here m and ρ are the number of sides and circumradius, respec- 

ively. As shown in Fig. 10 , changing the number of sides yields 

arious polygons, including the equilateral triangle, square, and 

exagon. For geometries with offset regular polygonal boundaries, 

he annulus is described as follows: 

 o ( θ ) = 

ρo cos ( π/m ) 

cos { ( 2 /m ) arcsin [ cos ( mθ/ 2 ) ] } , m = 3 , 4 , 5 , . . . 

r i ( θ ) = 

ρo { 1 −[ ( δ�/ρo ) / cos ( π/m ) ] } cos ( π/m ) 

cos { ( 2 /m ) arcsin [ cos ( mθ/ 2 ) ] } , m = 3 , 4 , 5 , . . . 

(22) 

here ρo , r o , r i and δ� are the outer circumradius, outer and in- 

er radial coordinates, and apothem-to-apothem wall thickness, re- 

pectively. 
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Fig. 13. Model validation for nonuniform wall thickness. 
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Like the hyperelliptical sector, the parameters required to calcu- 

ate the shape factor using the present model, Eq. (12) , do not have

losed-form solutions and must be calculated with Eq. (19) . Using 

qs. (19) and (22) in the present model, the nondimensional inputs 

or the shape factor, � and s o /s i , can be expressed as a function of

he sector angle, φ, the number of sides, m , and the thickness ratio,

�/ρo . 

The present model is plotted against the nondimensional char- 

cteristic length scale, � , and compared to the results from finite 

lement modeling (FEM) in Fig. 11 . The results from finite element 

odeling were obtained by sweeping through sector angles for 

hosen thickness ratios. The minimum investigated sector angles 

re listed in Table A.2 in Appendix A . The relationship between 

he sector’s geometric parameters and nondimensional character- 

stic length scale was previously discussed in Section 3.1.1 . 

Polygonal annulus sectors have a boundary length ratio that is 

 function of all of the geometric parameters: sector angle, number 

f sides, and thickness ratio. Therefore, as opposed to the hyperel- 

iptical annulus sector plots, Figs. 8 and 9 , results from the present 
11 
odel for polygonal annulus sectors were distinct and could not 

e collapsed to similar curves. 

The present model showed good agreement and accurately cap- 

ured trends for varying numbers of sides, sector angles, and wall 

hicknesses. As shown in Table A.2 in Appendix A , the root-mean- 

quare (rms) and maximum differences between the results from 

he present model and finite element modeling was less than 6 

nd 16%, respectively, for all investigated sectors. As shown in 

ig. 11 and discussed in Section 3.1.1 , sectors with larger thickness 

atios and smaller sector angles typically had more considerable 

elative differences owing to the nature of the underlying two-rule 

ethod and the stated assumptions. Consistent with observations 

or hyperelliptical annulus sectors, the limit for reliable agreement 

as at a nondimensional length scale of about 0.55. 

.2. Nonuniform wall thickness 

The model also considers sectors with highly nonuniform wall 

hickness, defined by distinct boundaries. As shown in Fig. 12 , this 
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Fig. 13. Continued 
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nalysis considers varying-sided regular polygons outside and in- 

ide a circle. Using Eq. (22) , the boundaries are written in radial 

oordinates as follows: 

 o ( θ ) = 

ρo cos ( π/m ) 

cos { ( 2 /m ) arcsin [ cos ( mθ/ 2 ) ] } , m = 3 , 4 , 5 , . . . , 

r i ( θ ) = ρo [ 1 − ( δ�/ρo ) ] (23) 

or the circle in polygon and: 

 o ( θ ) = ρo 

r i ( θ ) = 

ρo { 1 − [ ( δ�/ρo ) / cos ( π/m ) ] } cos ( π/m ) 

cos { ( 2 /m ) arcsin [ cos ( mθ/ 2 ) ] } , m = 3 , 4 , 5 , . 

(24) 

or the polygon in circle, where ρo , m , δ�, r o and r i are the outer 

ircumradius, number of polygon sides, apothem wall thickness, 

nd outer and inner radial coordinates, respectively. 

The parameters required to calculate the shape factor using the 

resent model, Eq. (13) , do not have closed-form solutions but can 

e calculated with Eq. (19) . Using Eqs. (19) and (23) or (19) and

24) in the present model, the nondimensional inputs for the shape 
12 
actors of circle in polygon or polygon in circle sectors, � and s o /s i ,

an be expressed as a function of the sector angle, φ, the number 

f sides, m , and the thickness ratio, δ�/ρo . 

The present model is plotted against the nondimensional char- 

cteristic length scale, � , and compared to results from finite ele- 

ent modeling (FEM) in Fig. 13 . Results from finite element mod- 

ling were obtained by sweeping through sector angles for cho- 

en thickness ratios. The minimum investigated sector angles are 

isted in Table A.3 in Appendix A . As previously mentioned in the 

tated assumptions, isotherms are assumed to be equivalently ra- 

ial (i.e., parallel to the inner and outer boundaries, s i and s o ) in

he present model. Thus, to avoid sectors that may be better mod- 

led with a thermal spreading resistance, only larger sector angles 

ere considered to validate the thicker circular cylinder with a 

quare hole. These sector angles were chosen to keep the inves- 

igated nondimensional characteristic length scale range compara- 

le to the thicker circular cylinder with a triangular hole. The re- 

ationship between the sector’s geometric parameters and nondi- 

ensional characteristic length scale was previously discussed in 

ection 3.1.1 . 
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Table A1 

The minimum investigated sector angles and percentage differences (minimum, 

root-mean-square, and maximum) between the present model and the results from 

finite element modeling for hyperelliptical annulus sectors. 

ε = 1 

δ0 /a 

φmin min/rms/max 0.1 0.2 0.3 

n = 

1 

20 ◦ 20 ◦ 20 ◦

0/2/8% 0/5/17% 0/6/13% 

n = 

4 

40 ◦ 70 ◦ 90 ◦

1/4/12% 1/5/14% 1/7/14% 

n → 

∞ 

40 ◦ 80 ◦ 90 ◦

0/4/13% 0/4/15% 0/4/8% 

ε = 1 / 2 

δ0 /a 

φmin min/rms/max 0.1 0.2 0.3 

n = 

2 

20 ◦ 20 ◦ 20 ◦

0/3/4% 0/6/10% 1/10/15% 

n = 

4 

20 ◦ 40 ◦ 40 ◦

0/5/17% 0/6/10% 0/10/15% 

n → 

∞ 

30 ◦ 50 ◦ 90 ◦

0/5/15% 0/8/25% 0/9/20% 

Table A2 

The minimum investigated sector angles and percentage differences (minimum, 

root-mean-square, and maximum) between the present model and the results from 

finite element modeling for regular polygonal annulus sectors. 

δ�/ρo 

φmin min/rms/max 0.1 0.2 

m = 

3 

50 ◦ 70 ◦

0/4/13% 0/6/16% 

m = 

4 

50 ◦ 20 ◦

0/5/15% 0/5/11% 

m = 

6 

20 ◦ 20 ◦

0/2/3% 0/6/13% 

Table A3 

The minimum investigated sector angles and percentage differences (minimum, 

root-mean-square, and maximum) between the present model and results from fi- 

nite element modeling for the nonuniform wall thickness sectors. 

Circle in polygon 

δ�/ρo 

φmin min/rms/max 0.1 0.2 

m = 

3 

20 ◦ 20 ◦

1/13/19% 0/9/15% 

m = 

4 

20 ◦ 30 ◦

1/6/13% 0/8/16% 

Polygon in circle 

δ�/ρo 

φmin min/rms/max 0.4 0.6 0.7 

m = 

3 

- 50 ◦ 40 ◦

0/11/20% 1/13/17% 

m = 30 ◦ 160 ◦ - 
The present model showed good agreement and accurately cap- 

ured trends for varying numbers of sides, sector angles, and wall 

hicknesses. As shown in Table A.3 in Appendix A , the root-mean- 

quare (rms) and maximum differences between results from the 

resent model and finite element modeling was less than 13 and 

0%, respectively, for all investigated sectors. There was no defini- 

ive trend concerning the relative difference and the nondimen- 

ional characteristic length scale, owing to the asymptotic blend- 

ng modification to the underlying two-rule method. However, as 

hown in Fig. 13 , the present model outperformed the underlying 

wo-rule method, Eq. (5) , compensating for the significant relative 

ifference in the shape factor of the entire annulus. 

A walk-through of simple example problems is provided in the 

upplementary material. This walk-through highlights the simplic- 

ty of the present model, where a potentially complicated prob- 

em in Laplace’s equation ( Eq. (14) ) with mixed boundary condi- 

ions is reduced to a geometry problem involving the calculation of 

 few dimensions. This simplification allows for computationally- 

nexpensive parametric analysis (e.g., the same type of analysis 

sed in the subsequent validation) and optimization for problems 

nvolving the calculation of conduction thermal resistance in an 

nnulus sector (as previously mentioned, many problems do, see 

ig. 1 ). These analyses involve many iterations that re-calculate 

he output, in this case, the shape factor (or thermal resistance). 

umerically, these analyses would involve many re-evaluations of 

aplace’s equation subject to mixed boundary conditions, thus, 

caling the already significant computational performance gap be- 

ween the present model and numerical models. Similar reason- 

ng could be applied to the advantageous use of the present model 

n lumped parameter modeling involving many different compli- 

ated geometries and transport mechanisms (e.g., convective heat 

16] and mass [17] ). In short, the present model’s simplicity, ease 

f use, and computational efficiency are its key advantages over 

ore intensive numerical modeling. 

. Summary and conclusions 

A new analytical model was developed to predict the conduc- 

ion shape factor for the annulus sector formed between arbitrar- 

ly shaped isothermal inner and outer boundaries. In summary, the 

resent model was: 

• derived from the equivalent concentric circular annulus sector, 

as an extension of the equivalent concentric circular annulus 

[8,9] , 
• extended to consider annulus sectors with nonuniform wall 

thickness, and, 
• extensively validated with finite element modeling results for 

more than a thousand parametrically-defined annulus sectors 

with uniform and nonuniform wall thickness, capturing most 

of the results from finite element modeling within a relative 

difference of 10%, and all results within a relative difference of 

20%. 
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